

Unit – IV

Pointers: Concept of a Pointer, Declaring and Initializing Pointer Variables, Pointer

Expressions and Address Arithmetic, Null Pointers, Generic Pointers, Pointers as

Function arguments, Pointers and Arrays, Pointers and Strings, Pointer to Pointer,

Dynamic Memory Allocation, Dangling Pointer, Command line Arguments.

 Pointer Introduction:-

 One of the powerful features of C is ability to access the memory variables

by their memory address.

 This can be done by using Pointers. The real power of C lies in the proper use of

Pointers.

 A pointer is a variable that can store an address of a variable (i.e., 112300).We say

that a pointer points to a variable that is stored at that address.

 A pointer itself usually occupies 4 bytes of memory (then it can address cells from 0

to 232-1).

Advantages of Pointers:-

1. A pointer enables us to access a variable that is defined out side the function.

2. Pointers are more efficient in handling the data tables.

3. Pointers reduce the length and complexity of a program.

4. They increase the execution speed.

Definition :-

A variable that holds a physical memory address is called a pointer variable or Pointer

Declaration :

Datatype * Variable-name;

Eg:- int *ad; /* pointer to int */

char *s; /* pointer to char */

float *fp; /* pointer to float

*/

char **s; /* pointer to variable that is a pointer to char */

Dangling Pointers in C

The most common bugs related to pointers and memory management is dangling/wild pointers.

Sometimes the programmer fails to initialize the pointer with a valid address, then this type of

initialized pointer is known as a dangling pointer in C.

Dangling pointer occurs at the time of the object destruction when the object is deleted or de-

allocated from memory without modifying the value of the pointer. In this case, the pointer is

pointing to the memory, which is de-allocated. The dangling pointer can point to the memory,

which contains either the program code or the code of the operating system. If we assign the value

to this pointer, then it overwrites the value of the program code or operating system instructions;

in such cases, the program will show the undesirable result or may even crash. If the memory is

re-allocated to some other process, then we dereference the dangling pointer will cause the

segmentation faults.

Let's understand the dangling pointer through some C programs.

Using free() function to de-allocate the memory.

1. #include <stdio.h>

2. int main()

3. {

4. int *ptr=(int *)malloc(sizeof(int));

5. int a=560;

6. ptr=&a;

7. free(ptr);

8. return 0;

9. }

In the above code, we have created two variables, i.e., *ptr and a where 'ptr' is a pointer and 'a' is

a integer variable. The *ptr is a pointer variable which is created with the help

of malloc() function. As we know that malloc() function returns void, so we use int * to convert

void pointer into int pointer.

The statement int *ptr=(int *)malloc(sizeof(int)); will allocate the memory with 4 bytes shown

in the below image:

The statement free(ptr) de-allocates the memory as shown in the below image with a cross sign,

and 'ptr' pointer becomes dangling as it is pointing to the de-allocated memory.

If we assign the NULL value to the 'ptr', then 'ptr' will not point to the deleted memory. Therefore,

we can say that ptr is not a dangling pointer, as shown in the below image:

Variable goes out of the scope

When the variable goes out of the scope then the pointer pointing to the variable becomes

a dangling pointer.

• A pointer is a variable that contains an address which is a location of another

variable in memory.

Consider the Statement

p=&i;

Here „&‟ is called address of a variable.

‘p’ contains the address of a variable i.

The operator & returns the memory address of variable on which it is operated, this is

called Referencing.

The * operator is called an indirection operator or dereferencing operator which is used

to display the contents of the Pointer Variable.

Consider the following Statements : int

*p,x;

x =5;

p= &x;

Assume that x is stored at the memory address 2000. Then the output for the following printf

statements is :

Output

Printf(“The Value of x is %d”,x); 5

Printf(“The Address of x is %u”,&x); 2000

Printf(“The Address of x is %u”,p); 2000

Printf(“The Value of x is %d”,*p); 5

Printf(“The Value of x is %d”,*(&x)); 5

 Pointers to pointers:-

 A pointer to a pointer is a form of multiple indirection, or a chain of pointers.
Normally, a pointer contains the address of a variable.

 When we define a pointer to a pointer, the first pointer contains the address of the

second pointer, which points to the location that contains the actual value as shown

below.

• A variable that is a pointer to a pointer must be declared as such.

• This is done by placing an additional asterisk in front of its name. For

example, the following declaration declares a pointer to a pointer of type

int –

int **var;

 Compatibility pointer:-

The rules for assigning one pointer to another are tighter than the rules for numeric

types.

 For example, you can assign an int value to a double variable without using a type

conversion, but you can’t do the same for pointers to these two types. Let’s see a simple C

program to exemplify this.

 L value and R value:-

 L-value: “l-value” refers to memory location which identifies an object. l-value may

appear as either left hand or right hand side of an assignment operator(=). l-value often

represents as identifier.

Expressions referring to modifiable locations are called “modifiable l-values“. A

modifiable l-value cannot have an array type, an incomplete type, or a type with the const

attribute

In C, the concept was renamed as “locator value”, and referred to expressions that

locate (designate) objects.

ptr_compatibility.c -- program illustrates concept of pointer
compatibility

*/

#include <stdio.h>

int main(void)

x = n; /* implicit type conversion */
pld = pi; /* compile-time error: assigning pointer-to-int to */

/* pointer-to-long-double */

The l-value is one of the following:

1. he name of the variable of any type i.e, an identifier of integral, floating, pointer,

structure, or union type.

2. A subscript ([]) expression that does not evaluate to an array.

3. A unary-indirection (*) expression that does not refer to an array

4. An l-value expression in parentheses.

5. A const object (a nonmodifiable l-value).

6. The result of indirection through a pointer, provided that it isn’t a function pointer.

7. The result of member access through pointer(-> or .)

R-value: r-value” refers to data value that is stored at some address in memory. A r-value

is an expression that can’t have a value assigned to it which means r-value can appear on

right but not on left hand side of an assignment operator(=).

Note: The unary & (address-of) operator requires an lvalue as its operand. That is, &n is a

valid expression only if n is an lvalue.

 Arrays:-

 An array is defined as the collection of similar type of data items stored at contiguous

memory locations.

 Arrays are the derived data type in C programming language which can store the

primitive type of data such as int, char, double, float, etc.

 It also has the capability to store the collection of derived data types, such as

pointers, structure, etc.

 The array is the simplest data structure where each data element can be randomly

accessed by using its index number.

 Pointer Arithmetic in C:-

Pointer Arithmetic in C

 We can perform arithmetic operations on the pointers like addition, subtraction, etc.

 However, as we know that pointer contains the address, the result of an arithmetic
operation performed on the

pointer will also be a pointer if the other operand is of type integer.

 In pointer-from-pointer subtraction, the result will be an integer value.

 Following arithmetic operations are possible on the pointer in C language:

o Increment

o Decrement

o Addition

o Subtraction

o Comparison

Incrementing Pointer in C:-

 If we increment a pointer by 1, the pointer will start pointing to the

immediate next location.

 This is somewhat different from the general arithmetic since the value of the pointer

will get increased by the size of the data type to which the pointer is pointing.

The Rule to increment the pointer is given below:

new_address= current_address + i * size_of(data type)

Where i is the number by which the pointer get increased.

Decrementing Pointer in C

 Like increment, we can decrement a pointer variable. If we decrement a pointer, it

will start pointing to the previous location.

 The formula of decrementing the pointer is given below:

new_address= current_address - i * size_of(data type)

C Pointer Addition

We can add a value to the pointer variable. The formula of adding value to pointer is given

below:

new_address= current_address + (number * size_of(data type))

C Pointer Subtraction

Like pointer addition, we can subtract a value from the pointer variable. Subtracting

any number from a pointer will give an address. The formula of subtracting value from the

pointer variable is given below:

new_address= current_address - (number * size_of(data type))

 Memory Allocation Function:-

 The concept of dynamic memory allocation in c language enables the C

programmer to allocate memory at runtime.

 Dynamic memory allocation in c language is possible by 4 functions of stdlib.h

header file.

1. malloc()

2. calloc()

3. realloc()

4. free()

Before learning above functions, let's understand the difference between static memory

allocation and dynamic memory allocation.

static memory allocation dynamic memory allocation

memory is allocated at

compile time.

memory is allocated at run
time.

memory can't be increased

while executing program.

memory can be increased

while executing program.

used in array.

used in linked list.

Now let's have a quick look at the methods used for dynamic memory allocation.

malloc()

allocates single block of requested memory.

calloc()

allocates multiple block of requested memory.

realloc()

reallocates the memory occupied by malloc() or

calloc() functions.

free()

frees the dynamically allocated memory.

 Array of Pointers:-

In computer programming, an array of pointers is an indexed set of variables in which the

variables are pointers (a reference to a location in memory).

 Pointers are an important tool in computer science for creating, using, and

destroying all types of data structures.

 An array of pointers is useful for the same reason that all arrays are useful: it allows

you to numerically index a large set of variables.

 Below is an array of pointers in C that sets each pointer in one array to point to an

integer in another and then print the values of the integers by dereferencing the

pointers.

POINTERS WITH ARRAYS:-

When an array is declared, elements of array are stored in contiguous locations. The

address of the first element of an array is called its base address.

Consider the array

2000 2002 2004 2006 2008

a[0] a[1] a[2] a[3] a[4]

The name of the array is called its base address.

i.e., a and k& a[20] are equal

Now both a and a[0] points to location 2000. If we declare p as an integer pointer, then we

can make the pointer P to point to the array a by following assignment.

P = a;

We can access every value of array a by moving P from one element to another. i.e.,

 P points to 0th element

P+1 points to 1st element

 P+2 points to 2nd element

 P+3 points to 3rd element

P +4 points to 4th element

Let's understand the dangling pointer through some C programs.

Using free() function to de-allocate the memory.

1. #include <stdio.h>

2. int main()

3. {

4. int *ptr=(int *)malloc(sizeof(int));

5. int a=560;

6. ptr=&a;

7. free(ptr);

8. return 0;

9. }

In the above code, we have created two variables, i.e., *ptr and a where 'ptr' is a pointer and 'a'

is a integer variable. The *ptr is a pointer variable which is created with the help

of malloc() function. As we know that malloc() function returns void, so we use int * to convert

void pointer into int pointer.

The statement int *ptr=(int *)malloc(sizeof(int)); will allocate the memory with 4 bytes

shown in the below image:

The statement free(ptr) de-allocates the memory as shown in the below image with a cross

sign, and 'ptr' pointer becomes dangling as it is pointing to the de-allocated memory.

If we assign the NULL value to the 'ptr', then 'ptr' will not point to the deleted memory.

Therefore, we can say that ptr is not a dangling pointer, as shown in the below image:

Variable goes out of the scope

When the variable goes out of the scope then the pointer pointing to the variable becomes

a dangling pointer.

Command Line Arguments in C

The arguments passed from command line are called command line arguments. These

arguments are handled by main() function.

To support command line argument, you need to change the structure of main() function as

given below.

1. int main(int argc, char *argv[])

Here, argc counts the number of arguments. It counts the file name as the first argument.

The argv[] contains the total number of arguments. The first argument is the file name always.

Example

Let's see the example of command line arguments where we are passing one argument with file

name.

#include <stdio.h>

void main(int argc, char *argv[]) {

 printf("Program name is: %s\n", argv[0]);

 if(argc < 2){

 printf("No argument passed through command line.\n");

 }

 else{

 printf("First argument is: %s\n", argv[1]);

 }

}

Output:

Program name is: program

First argument is: hello

If you pass many arguments, it will print only one.

1. ./program hello c how r u

Output:

Program name is: program

First argument is: hello

	Unit – IV
	➢ Pointer Introduction:-
	Advantages of Pointers:-
	Definition :-
	Declaration :

	Dangling Pointers in C
	➢ Pointers to pointers:-
	➢ Compatibility pointer:-
	➢ L value and R value:-
	➢ Arrays:-
	Incrementing Pointer in C:-
	Decrementing Pointer in C
	C Pointer Addition
	C Pointer Subtraction

	➢ Memory Allocation Function:-
	➢ Array of Pointers:-
	POINTERS WITH ARRAYS:-

	Command Line Arguments in C
	Example

